
Taking Vibe Code to

Production
Bharat Parsiya

$ whoami

Bharat Parsiya

Helps people and companies build
their products.

Needs and motivations

● Build cool stuff before coffee wears off

● Convince computers (and sometimes
people) to do what he wants

● Secretly chasing that “10x developer” meme
life

Pain points

● Too many side projects, not enough lifetimes

● Keeps reinventing wheels, but in cooler
colors

● Debugging at 2 AM because “it’ll only take 5
minutes”

How you can help me

● Intervene before he buys yet another
domain name

● Politely remind him sleep > YouTube rabbit
holes

● Pretend to laugh at his bad programming
jokes

Benefits of Vibe Coding

Saves Time

By doing a lot of heavy lifting, you can
make your apps quickly

Saves Money

Single person can make apps using a
single tool. A lot of free tools are also
available for the same.

Instant Dopamine

Seeing your apps being built in front of
your eyes is addictive and can give quick
rewards.

01

02

03

Vibe Code -> Good
Saves -> Time & Money

In Conclusion

Thank you

Go Vibe Code

Bharat Parsiya

What is Vibe Coding

From: Urban Dictionary

You can go from
idea → prototype
much faster

No blockers like overthinking
architecture or boilerplate.

Great for hackathons, demos,
or validating if something feels
right.

🚀 Speed & Momentum 🎨 Creativity &
Exploration
Lets you try
unconventional
approaches without
worrying about
“best practices.”

You often stumble on fresh
patterns you wouldn’t have
designed upfront.

🧘 Flow State

Less context-switching

Lets you focus entirely on
solving the problem and seeing
results quickly.

Keeps motivation high because
you see progress instantly.

🛠 Rapid Learning

By coding quickly and
loosely, you hit errors
sooner → faster
feedback loops.

You get hands-on learning
instead of being stuck in
“analysis paralysis.”

Perfect when you don’t
even know if the idea is
worth productionizing.

Allows you to communicate
ideas to teammates or
stakeholders quickly with
something tangible.

💡 Good for “Proof of
Concept”

Why people vibe code

Why one should not Vibe Code

Hidden Bugs Poor Maintainability Rework Overhead Team Collaboration Issues

Skipping validation, tests,
and structure makes bugs
creep in silently.

Fixing them later often
costs more time than if
you’d done it right upfront.

You usually end up rewriting
chunks to make them
production-ready.

Short-term speed often
leads to long-term delays.

Other devs may struggle to
understand or trust your
“quick hacks.”

Hard to onboard new
contributors when there’s
no consistency or
documentation.

Code is harder to read,
extend, or hand over to
teammates.

Lack of structure →
“spaghetti code” that
breaks when you touch one
part.

Security Issues for you and your users
Biggest Problem with Vibe Coding

1

2

3

4

Skipped Validation → Inputs not
checked, leading to crashes &
abuse.

 No Sanitization → Risk of injection
attacks (SQL/JS/HTML).

Uncaught Errors → Silent failures
cause data loss & instability.

Sensitive Data Leaks → User info or
API keys exposed in logs or code.

Solution कहां है?

How to Turn Vibe
Code Into Good
Code?

Vibe code often ignores input validation and crashes on edge
cases.

Add Validation &
Error Handling

“Add runtime input validation using Zod or Joi for all
user-facing functions. Ensure every function returns safe
defaults instead of crashing.”

No tests = fragile and unpredictable.

Write Unit Tests for
Critical Paths

“Generate Jest tests for this file. Focus on edge cases and
error scenarios.”

Vibe code grows into giant, messy files.

This could be a problem while iteratively making changes to
that file

Refactor Into Smaller
Functions / Files

“Refactor this 300-line file into multiple smaller files
grouped by feature, keeping functions under 50 lines.”

Dynamic or weak typing makes refactors dangerous.

 Add Type Safety

“Infer and add strict TypeScript types for all functions and
props. Replace all any with the correct types.”

Quick code often skips authentication, authorization, and
sanitization.

Harden Security &
Permissions

“Review this Express API and add authentication checks,
SQL injection prevention, and request sanitization.”

Hard to debug without proper logs or monitoring.

 Improve Logging &
Observability

“Add pino-based structured logging to each API route.
Include request ID and response time.”

Future devs (including future you) won’t understand the
hacks.

Document as You Go

“Add JSDoc comments to every exported function and
generate a README.md with usage examples.”

AI and vibe coding miss real-world experience.
AI will hallucinate, sooner or later. Never trust it blindly, always
verify.

Review With Humans

✨ “No matter how good your AI agents are, always get a
second pair of eyes.”

More tips to keep you
Vibing

Always review what changed before committing.

Prevents AI agents (or your own shortcuts) from rewriting
unrelated sections.

Pro tip: `git` should be your best friend in this journey

Check the Diff After
Every AI/Code
Change

Never vibe code directly in main.

Create throwaway branches (feature/experiment-v1) for
exploration.

Use Branches, Not
Main

Add quick // TODO: add tests here markers.

 Write TODOs Instead
of Polishing Mid-Flow

ESLint, Prettier, or flake8 catch obvious mistakes while you
vibe.

Use Linters/Formatters
as Seatbelts

“Fix ESLint errors in this file but do not change business
logic.”

Spin up a quick UI or CLI demo as you go.

Fast feedback from stakeholders → avoid wasted vibe.

Pair Vibe Code With
Prototypes/Demos

Sprinkle console.log / logger.info early.

When debugging vibe-built features, you’ll thank yourself.

Don’t Skip Logging
While Vibe Coding

“Add debug logs at function entry/exit with variable
values, but keep them behind a DEBUG flag.”

Vibe code tends to install shiny packages fast.
More deps = more complexity & security risk.
Rule of thumb: explore with fewer packages, add later if
essential.

Limit Dependencies
During Experiments

“Check this package.json for unused or risky dependencies.
Suggest removals.”

● https://dev.to/shayy/why-your-vibe-coded-app-will-fa
il-and-how-to-fix-it-369p

● https://www.finalroundai.com/blog/ai-vibe-coding-des
troying-junior-developers-careers
https://addyo.substack.com/p/vibe-coding-is-not-the
-same-as-ai

● https://dev.to/naveens16/the-vibe-check-failed-why-a
i-assisted-vibe-coding-crashes-against-enterprise-reali
ty-2014

पढाई Material

https://dev.to/shayy/why-your-vibe-coded-app-will-fail-and-how-to-fix-it-369p
https://dev.to/shayy/why-your-vibe-coded-app-will-fail-and-how-to-fix-it-369p
https://www.finalroundai.com/blog/ai-vibe-coding-destroying-junior-developers-careers
https://www.finalroundai.com/blog/ai-vibe-coding-destroying-junior-developers-careers
https://addyo.substack.com/p/vibe-coding-is-not-the-same-as-ai
https://addyo.substack.com/p/vibe-coding-is-not-the-same-as-ai
https://dev.to/naveens16/the-vibe-check-failed-why-ai-assisted-vibe-coding-crashes-against-enterprise-reality-2014
https://dev.to/naveens16/the-vibe-check-failed-why-ai-assisted-vibe-coding-crashes-against-enterprise-reality-2014
https://dev.to/naveens16/the-vibe-check-failed-why-ai-assisted-vibe-coding-crashes-against-enterprise-reality-2014

✨ “Aapke bugs chhote ho, aur aapke ‘features’ bade.”

Vibe responsibly

